3.87 \(\int \frac{1}{\sqrt{3+2 x^4}} \, dx\)

Optimal. Leaf size=72 \[ \frac{\left (\sqrt{6} x^2+3\right ) \sqrt{\frac{2 x^4+3}{\left (\sqrt{6} x^2+3\right )^2}} \text{EllipticF}\left (2 \tan ^{-1}\left (\sqrt [4]{\frac{2}{3}} x\right ),\frac{1}{2}\right )}{2 \sqrt [4]{6} \sqrt{2 x^4+3}} \]

[Out]

((3 + Sqrt[6]*x^2)*Sqrt[(3 + 2*x^4)/(3 + Sqrt[6]*x^2)^2]*EllipticF[2*ArcTan[(2/3)^(1/4)*x], 1/2])/(2*6^(1/4)*S
qrt[3 + 2*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.0073546, antiderivative size = 72, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 11, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.091, Rules used = {220} \[ \frac{\left (\sqrt{6} x^2+3\right ) \sqrt{\frac{2 x^4+3}{\left (\sqrt{6} x^2+3\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{\frac{2}{3}} x\right )|\frac{1}{2}\right )}{2 \sqrt [4]{6} \sqrt{2 x^4+3}} \]

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[3 + 2*x^4],x]

[Out]

((3 + Sqrt[6]*x^2)*Sqrt[(3 + 2*x^4)/(3 + Sqrt[6]*x^2)^2]*EllipticF[2*ArcTan[(2/3)^(1/4)*x], 1/2])/(2*6^(1/4)*S
qrt[3 + 2*x^4])

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{3+2 x^4}} \, dx &=\frac{\left (3+\sqrt{6} x^2\right ) \sqrt{\frac{3+2 x^4}{\left (3+\sqrt{6} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{\frac{2}{3}} x\right )|\frac{1}{2}\right )}{2 \sqrt [4]{6} \sqrt{3+2 x^4}}\\ \end{align*}

Mathematica [C]  time = 0.0244129, size = 25, normalized size = 0.35 \[ -\sqrt [4]{-\frac{1}{6}} \text{EllipticF}\left (i \sinh ^{-1}\left (\sqrt [4]{-\frac{2}{3}} x\right ),-1\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[1/Sqrt[3 + 2*x^4],x]

[Out]

-((-1/6)^(1/4)*EllipticF[I*ArcSinh[(-2/3)^(1/4)*x], -1])

________________________________________________________________________________________

Maple [C]  time = 0.193, size = 66, normalized size = 0.9 \begin{align*}{\frac{\sqrt{3}}{9\,\sqrt{i\sqrt{6}}}\sqrt{9-3\,i\sqrt{6}{x}^{2}}\sqrt{9+3\,i\sqrt{6}{x}^{2}}{\it EllipticF} \left ({\frac{x\sqrt{3}\sqrt{i\sqrt{6}}}{3}},i \right ){\frac{1}{\sqrt{2\,{x}^{4}+3}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(2*x^4+3)^(1/2),x)

[Out]

1/9*3^(1/2)/(I*6^(1/2))^(1/2)*(9-3*I*6^(1/2)*x^2)^(1/2)*(9+3*I*6^(1/2)*x^2)^(1/2)/(2*x^4+3)^(1/2)*EllipticF(1/
3*x*3^(1/2)*(I*6^(1/2))^(1/2),I)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{2 \, x^{4} + 3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*x^4+3)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/sqrt(2*x^4 + 3), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{1}{\sqrt{2 \, x^{4} + 3}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*x^4+3)^(1/2),x, algorithm="fricas")

[Out]

integral(1/sqrt(2*x^4 + 3), x)

________________________________________________________________________________________

Sympy [C]  time = 0.690768, size = 36, normalized size = 0.5 \begin{align*} \frac{\sqrt{3} x \Gamma \left (\frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{4}, \frac{1}{2} \\ \frac{5}{4} \end{matrix}\middle |{\frac{2 x^{4} e^{i \pi }}{3}} \right )}}{12 \Gamma \left (\frac{5}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*x**4+3)**(1/2),x)

[Out]

sqrt(3)*x*gamma(1/4)*hyper((1/4, 1/2), (5/4,), 2*x**4*exp_polar(I*pi)/3)/(12*gamma(5/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{2 \, x^{4} + 3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*x^4+3)^(1/2),x, algorithm="giac")

[Out]

integrate(1/sqrt(2*x^4 + 3), x)